Creating Multi-Tenancy in Flask Applications
Implementing Multi-Tenancy with Database Isolation and Schema Separation in Flask
Introduction
Multi-tenancy is a software architecture pattern that allows a single application instance to serve multiple customers (tenants) while keeping their data isolated. In this guide, we’ll explore different multi-tenancy strategies in Flask, including:
- Database-per-tenant
- Schema-based multi-tenancy
- Row-level multi-tenancy
Why Multi-Tenancy?
Multi-tenancy is crucial for SaaS (Software as a Service) applications, as it allows:
✅ Cost Efficiency – One codebase serves multiple tenants.
✅ Data Isolation – Tenant data is segregated for security.
✅ Scalability – Easily add new tenants without changing the core system.
Setting Up Flask with SQLAlchemy
Install Dependencies
Ensure you have Flask and SQLAlchemy installed:
pip install flask flask_sqlalchemy flask-migrate psycopg2
Flask App Configuration
from flask import Flask, g, request
from flask_sqlalchemy import SQLAlchemy
app = Flask(__name__)
# Default Database URI (used if tenant-specific DB is not set)
app.config["SQLALCHEMY_DATABASE_URI"] = "postgresql://user:password@localhost/default_db"
db = SQLAlchemy(app)
class Tenant(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String(50), unique=True, nullable=False)
database_url = db.Column(db.String(200), nullable=False)
Determining Tenant from Request
Each request must be linked to a specific tenant. We’ll extract the tenant identifier from the request subdomain or headers:
def get_tenant():
tenant_name = request.headers.get("X-Tenant-Name") # Example: Tenant from request header
if not tenant_name:
return None
tenant = Tenant.query.filter_by(name=tenant_name).first()
return tenant
@app.before_request
def set_tenant():
tenant = get_tenant()
if tenant:
app.config["SQLALCHEMY_DATABASE_URI"] = tenant.database_url
g.tenant = tenant
Multi-Tenancy Strategies
1️⃣ Database-per-Tenant
Each tenant has its own separate database. The application dynamically switches the database connection based on the tenant.
✅ Strong data isolation
✅ Easier tenant migration
❌ High resource usage
Implementation
def switch_database(tenant):
if tenant:
app.config["SQLALCHEMY_DATABASE_URI"] = tenant.database_url
db.engine.dispose() # Reset connection pool
When a request arrives, the database connection switches dynamically based on the tenant.
Example request:
GET /dashboard
Host: app.example.com
X-Tenant-Name: "company1"
2️⃣ Schema-Based Multi-Tenancy
Each tenant has a separate schema within the same database, keeping data isolated at the schema level.
✅ Better resource utilization
✅ Easy to manage backups
❌ Schema migration complexity
Creating a Schema for Each Tenant
from sqlalchemy import text
def create_tenant_schema(tenant_name):
schema_name = f"tenant_{tenant_name}"
db.session.execute(text(f"CREATE SCHEMA IF NOT EXISTS {schema_name}"))
db.session.commit()
Configuring Flask-SQLAlchemy to Use Schema
from sqlalchemy.schema import MetaData
def get_schema():
if g.tenant:
return f"tenant_{g.tenant.name}"
return "public"
metadata = MetaData(schema=get_schema())
db = SQLAlchemy(app, metadata=metadata)
Each request uses the correct schema dynamically.
3️⃣ Row-Level Multi-Tenancy
All tenants share the same database and tables, but their data is separated using a tenant_id column.
✅ Highly efficient for small tenants
✅ Easy migrations
❌ Risk of cross-tenant data leaks
Modifying Models for Tenant Filtering
class User(db.Model):
id = db.Column(db.Integer, primary_key=True)
tenant_id = db.Column(db.Integer, db.ForeignKey("tenant.id"), nullable=False)
name = db.Column(db.String(100), nullable=False)
@app.before_request
def enforce_tenant():
if g.tenant:
db.session.query(User).filter_by(tenant_id=g.tenant.id)
Every query will automatically filter by tenant_id.
Best Practices for Multi-Tenant Flask Apps
✔ Choose the right approach based on your scalability needs.
✔ Use connection pooling for database efficiency.
✔ Encrypt tenant-specific data for security.
✔ Automate tenant onboarding with schema creation and database provisioning.
✔ Implement robust logging and monitoring for tenant performance tracking.
Conclusion
By implementing multi-tenancy in Flask, you can build scalable, secure, and cost-efficient SaaS applications. Choose a strategy that best fits your business and technical needs:
✅ Database-per-tenant → Best for large-scale, isolated tenants.
✅ Schema-based multi-tenancy → Best for medium-scale apps.
✅ Row-level multi-tenancy → Best for smaller apps with shared data models.
🚀 Start implementing multi-tenancy in your Flask applications today!
Do you have any questions? Drop them in the comments below!