Flask and Prometheus Monitoring: Enhancing Application Performance
Learn how to monitor Flask applications using Prometheus for real-time performance insights
Introduction
Monitoring is essential for ensuring optimal performance and reliability in web applications. Prometheus, an open-source monitoring system, provides powerful metrics collection, querying, and alerting capabilities.
In this guide, we will explore how to integrate Prometheus with Flask to monitor application performance, collect useful metrics, and visualize them with Grafana.
Why Use Prometheus for Monitoring?
Prometheus is widely used due to its:
- Pull-based metric collection for efficient data retrieval.
- Multi-dimensional data model with labels for flexible querying.
- Built-in alerting system via Alertmanager.
- Integration with Grafana for rich visual dashboards.
Setting Up Flask with Prometheus
Installing Dependencies
First, install the required packages:
pip install flask prometheus_client
prometheus_client
: Provides Prometheus-compatible metrics for Flask.
Creating a Basic Flask App with Prometheus
from flask import Flask
from prometheus_client import start_http_server, Summary, Counter, Gauge, Histogram
import time
import random
app = Flask(__name__)
# Define Prometheus metrics
REQUEST_COUNT = Counter("flask_request_count", "Total request count")
REQUEST_LATENCY = Histogram("flask_request_latency_seconds", "Request processing time")
ACTIVE_USERS = Gauge("flask_active_users", "Current active users")
@app.route("/")
def home():
REQUEST_COUNT.inc() # Increment request count
start_time = time.time()
# Simulate processing time
time.sleep(random.uniform(0.1, 0.5))
REQUEST_LATENCY.observe(time.time() - start_time) # Record latency
return "Hello, Flask with Prometheus!"
if __name__ == "__main__":
start_http_server(8000) # Start Prometheus metrics server
app.run(debug=True)
- The Counter tracks total requests.
- The Histogram records request latency.
- The Gauge measures active users.
- The start_http_server(8000) exposes metrics at
http://localhost:8000
.
Exposing Metrics Endpoint
Prometheus needs an endpoint to scrape metrics. Update the Flask app:
from prometheus_client import generate_latest, CONTENT_TYPE_LATEST
@app.route("/metrics")
def metrics():
return generate_latest(), 200, {"Content-Type": CONTENT_TYPE_LATEST}
- Now, Prometheus can scrape metrics from
http://localhost:5000/metrics
.
Setting Up Prometheus
Installing Prometheus
Download and install Prometheus:
wget https://github.com/prometheus/prometheus/releases/latest/download/prometheus-linux-amd64.tar.gz
tar -xvf prometheus-linux-amd64.tar.gz
cd prometheus-linux-amd64
Configuring Prometheus
Modify prometheus.yml
:
scrape_configs:
- job_name: "flask_app"
metrics_path: "/metrics"
static_configs:
- targets: ["localhost:5000"]
```
Start Prometheus:
```sh
./prometheus --config.file=prometheus.yml
Access the Prometheus UI at http://localhost:9090
.
Visualizing Metrics with Grafana
Installing Grafana
sudo apt-get install -y grafana
sudo systemctl start grafana-server
Adding Prometheus as a Data Source
- Open
http://localhost:3000
(default Grafana port). - Go to Configuration > Data Sources.
- Select Prometheus and set the URL as
http://localhost:9090
.
Creating a Dashboard
- Click Create > Dashboard.
- Add a new panel and use PromQL queries like:
flask_request_count
(Total Requests)flask_request_latency_seconds
(Request Latency Histogram)flask_active_users
(Active Users)
Setting Up Alerts
Defining Alert Rules
Modify prometheus.yml
:
alerting:
alertmanagers:
- static_configs:
- targets: ["localhost:9093"]
rule_files:
- "alert.rules.yml"
Create alert.rules.yml
:
groups:
- name: flask_alerts
rules:
- alert: HighRequestLatency
expr: flask_request_latency_seconds{quantile="0.9"} > 0.4
for: 1m
labels:
severity: warning
annotations:
summary: "High request latency detected"
```
Start **Alertmanager**:
```sh
./alertmanager --config.file=alertmanager.yml
Optimizing Flask for Performance
-
Use Gunicorn for better concurrency:
gunicorn -w 4 -b 0.0.0.0:5000 app:app
- Enable Caching with Redis or Memcached.
- Use Async Frameworks like FastAPI for high-performance APIs.
Conclusion
Integrating Prometheus with Flask allows real-time performance monitoring, ensuring applications remain fast and reliable. By visualizing metrics in Grafana and setting up alerts, developers can proactively address issues and maintain system health.
🚀 Start monitoring your Flask applications today with Prometheus and Grafana!